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The methods proposed in [l] are used to solve the two-dimensional problem of congealing flow in a 

porous medium around a system of two freezing columns. Equilibrium configurations for ice-soil body 

are found for a wide range of the governing physical parameters. The results are used to reveal the 

inconsistency of certain linking criteria. 

In most applications 12, 3] the characteristic transverse dimensions of the frozen region are 
small compared to the longitudinal dimensions, and in the first approximation the problem of 
determi~ng the shape of the ice-soil body can be formulated two-dimensionally. The specific 
feature of the problem is the possibility of the existence of a limiting equilibrium ice-soil body. 
Here the heat flux from the thawed background is balanced by conduction heat transfer to the 
column. 

One of the main problems of artificial freezing is to find the conditions for the linking of ice- 
soil bodies formed around individual columns. A base estimate is obtained by solving the 
problem of two freezing columns. An approximate solution of this problem exists [2] based on 
modelling an individual ice-soil body by a circular cylinder, which gives a linking criterion that 
is several times larger than that observed in practice. Another well-known criterion [4] is 
constructed by asymptotically solving the problem for ice-soil bodies that have already 
merged. This is actually a “non-separation” criterion, but its validity has not been analysed. 

1. STATEMENT OF THE PROBLEM 

The process is assumed to take place in the Z= X+iY plane (Fig. la), filtration obeys 
Darcy’s law, the liquid is incompressible, the thermal properties of the porous medium are 
constant, and the mathematical model of the phenomenon under consideration can be 
represented in the dimensionless form 

v=-VP, divv=O, ZED;; IVI=I, ~zf-_)~ (1.1) 

Pe(vVW)=A@-, ZED;; 0-=t, Iti+= WI 

AtI+ =o, tdq; ae+kan=ae-/an, e+=e-=o, d-, (1.3) 

Iii~&I+/&=q, z=zk (k=1,2) (1.4) 
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where the dimensionless characteristics and independent variables are as follows: 

z=$ $-I;, ,+=fT+-T,)k+ 
(L -T,)h- 

KP pe _--d-H V 

p=z-’ v=-, e 
a- ’ V, ‘= (T, -To)&- 

Here Pe is the P&let number, D; is the filtration domain, 0: is the domain occupied by the 
solid body that is being formed, II’, = aD: = 3D; is its boundary, V is the filtration velocity, P is 
the pressure, T- and T’ are the temperatures in domains D; and D:, respectively, n is the 
normal to I?, external to the domain Dz, 2, (k= 1, 2) are the coordinates of the cooling 
sources (coolers), KC is the ratio of the thermal capacities of the liquid and the porous 
medium, X and h’ are the thermal conductivities in domains D; and Dl respectively, a- is 
the thermal diffusivity in D;, K is the filtration coefficient, TO is the freezing point of the liquid, 
T, and V, are the temperature and velocity at infinity, Q is the intensity of the coolers, and H 
is half the distance between the coolers (the freezing columns, which are represented in the z 
plane by small circles and which are shrunk to points, the heat consumption being conserved). 

We introduce the length-scale I and dimensionless parameters h and Pe., together with the 
physical c plane that has been normalized with respect to 1 

I= (2q)2a- , h J!_ pe pe 
K,V, I’ *=-ii-- (1.5) 

The objects f”,, Dl, 0; and ck in the < plane correspond to F,, D,‘, D; and z, in the z plane. 
Equations (1.1) allow the introduction of the complex flow potential IV- = ‘p+iyr in the usual 

manner, where cp = -p, v is the stream function, and Eqs (1.3) have a thermal potential W’ = 
-8++iy+, where w+ is the thermal stream function. In the W- plane the contour I-, corres- 
ponds to a horizontal cut rw of length 4a where a is a parameter to be determined (Fig. lb). 
We also introduce the W, = cp* + iv, plane related to W- 

W, = W-h, a, = ah (1.6) 

We apply the Boussinesq transformation to the first equation in (1.2), which is equivalent to 
changing from Q-(z) to ~-(~) using as yet unknown function K(z), which performs a 
conformal mapping of the z plane onto the K plane. This results in the separation from (l.l)- 
(1.4) of a closed heat exchange problem between a plate and a uniform flow in the I% plane 
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Pe. ae- I acp* = a2e- I afp: + a2e- I av: 

e-=1, IW*I+=; e-=0, W*El-, 
(1.7) 

Because this problem is symmetrical about the real semi-axis in W., the heat flux densities 
a&/~. on the upper and lower sides of the plate r, only differ in sign. If we introduce the 
function 

the methods of [5, 61 enable us to reduce problem (1.7) to the boundary integral equation 

R= i~(S)Ko(Plr-5l)exp[P(r-5)ldS, t~[-l,l] 
-1 

4 = il#Jds, P = 4a,q2 
-I 

(1.8) 

(1.9) 

The auxiliary parameters a. and P are obviously related through the unknown function ~(6) 
to the physical parameter 4. If any one of these three parameters is specified the other two are 
determined. 

Without dwelling on the details of the numerical procedure, we now assume that the func- 
tion l.t(k) and, consequently, a&/&& on r,, are known. Then the original problem (l.l)-(1.4) 
can be formulated as a coupling problem for analytic functions W,(c) and W’(c): it is required 
to find a function IX(<), analytic throughout Di and satisfying the condition 

dW,/d(t=l, l[l+c- (1.10) 

and a function W+(c), analytic throughout DC, except at the points ck where it has logarithmic 
singularities, with boundary conditions on the contour rs 

ImW,=ReW+=O, (1.11) 

It is difficult to solve a coupling problem formulated in this manner because the shape of the 
contour on which the boundary conditions are specified is unknown. below we shall use a 
parameterization that is widely used in the theory of ideal fluid jets [7]. 

We introduce the plane of the auxiliary variable t, in which the contour rL corresponds to 
the unit circle r, centred at the origin. The interior of the circle is denoted by D,! and the 
exterior by 0; (see Fig. lc). 

The conformal mapping lK(t-) is given by the Zhukovskii function (71 

W*(t_)=a,(C+1/r_) (1.12) 

The corresponding mapping IV+@‘) is found by jet theory methods [8] 

W’(t’) = _L 2 ,nf+-tk 
2R &=I 1 - t’& 

The unknown complex parameters t, correspond to the images of the coolers 6, in the 
domain D5+. Below we shall restrict ourselves to two arrays of coolers: a tandem array strictly 
along the stream and a transverse array when the plane passing through the cooler axes is 
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perpendicular to the stream. The corresponding positions of the images 6, in the domain D,! 
will be the points t, = rtd and tn = kid, where d is an auxiliary parameter to be determined. 

We shall perform the detailed calculation for a transverse array of coolers. In this case we 
have 

w’(t+) = -%l (t”)’ + d2 

2x 1+d2(t+)2 (1.13) 

It should be noted that as the point z approaches the contour r, (corresponding to c moving 
towards IYJ from inside and from outside, in the t plane we respectively obtain images rl E I-, 
and 5 E I’, of that point. In the general case 5 #?I (Figs la and c). However the boundary 
conditions (l.ll), with (1.12) and (1.13), enable one to establish the relation 17 = I$&, which is 
called the shift [9, lo]. 

Indeed, condition (1.11) can be written in the form 

dW+ -I 
,,Ol)F+m) = ide-[W.(~)]$&)F-({); F’ = -$- 

awl [ 1 , t*EDf (1.14) 

from which it follows that 

(1.15) 

The last relation defines the shift TI = q(c). We will find its specific form. Suppose 

Then taking to = 1, no = 1, from (1.12) (1.13) and (1.15) we obtain 

=a*j 1 ~[W*~ei~)]~e’~ -e-“)do 
* 

and after some elementary algebra we obtain 

p(a) = a(0) + arctg 
sin 2a(a) 

de2 - cos2a(o) I ’ 
cos G) sin tsdcr (1.17) 

Expression (1.17) together with (1.16) gives the requires shift formula. 
The junction problem formulated above in the physical plane can now be formulated as a 

Riemann problem with a shift [9, lo]: it is required to find a function F’(t’) analytic through- 
out r>+ and a function F-(t-) analytic throughout I),, with a boundary condition on the 
contour r, 

and an additional condition at infinity 

F-[t-II 11-1-_)m =1/a, (1.19) 

Here q(c) is the shift function given by (1.16) and (1.17), and according to (1.11) Q(c) has 
the form 
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(1.20) 

The Riemann problem with shift (Gazeman problem) has been fairly well investigated 
[9, lo]. Its solution has the form 

(1.21) 

(1.22) 

Here do) is a complex-valued function satisfying the integral equation 

w+&_n i{PC )[ , d ,tgP(oblx~) 
x 2 

+i]-[etg~+i]}rp(CT)dG= 

= In G(s), s E [-n,Icl (1.23) 

G(o) = P’(o)expti@(a> - ON, a E C-n, tl (1.24) 

and pfo) and a(a) are represented by formulae (1.17). Having solved Eq. (1.23) it is easy to 
reconstruct the shape of the ice-soil body using the expression. 

1 L - 411 _jnq(a)da + i[lYcp(cO $1 + sl (1.25) 

obtained from (1.21) using the Sokhotskii-Plemel formula and the notation F(cp(a) IS) for 
the Iiilbert integral of the function ut(o) [9]. Finally, in order to return to the z plane, it is 
necessary to compute 

(1.26) 

and divide it into <: z = C,/h. Knowledge of h also enables us to determine the connection 
between the auxiliary parameter d and the physical parameter Pe. Indeed, from (1,5), (1.6) and 
(1.9) we have P = Pe,a, from which it follows that 

Pe= Phla, (1.27) 

Thus the original problem (l.l)-(1.4) splits into two problems: to solve Eq. (1.8) with 
condition (1.9) and to solve Eq. (1.23). The first problem has been thoroughly investigated 
fl, 5,111. 

The solution given in [5] in the form of a n expansion in Mathieu functions is inconvenient for 
numerical calculations, but it enables us to draw an important conclusion on the Holder continuity of the 
function [).t(coso)sina], and consequently, of the function u’(o) (see (1.17)). An efficient numerical 
algorithm for solving Eq. (1.18) has been proposed [I]. The analysis performed in [ll] shows that the 
function o’(o) satisfies the condition 0 <: a’(o) < OQ throughout the interval [-x, 7~1 and, consequently, a 

function CL_,(~) exists that is the inverse of a(o). 
Equation (1.23) is an unconditionally and uniquely solvable Fredholm integral equation of the second 

kind [12]. However, its numerical implementation by the collocation method on a uniform grid (131 
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encounters difficulties in the most interesting domain of variation of the parameter d = l-E, E < 1, which 
corresponds to a thin bridge connecting the ice-soil bodies. This is because the function 

p’(o) = a’(a) 
l-d4 

l-2d2cos2a(a)+d4 

and hence the kernel of the integral equation have an increment of order ll&, as the contour goes around 
the points o = 0, cr = rtn, while at the same time the right-hand side of (1.23) has an increment of order 
Ina. Nevertheless, a mathematical analysis of the situation that arises enables us to make significant 

progress towards solving the problem in question and to construct a simple numerical algorithm using the 

analytical properties of the solution. 

2. SMALL P 

This limit is fundamental in the study of analytic properties and the construction of an 
approximate solution of Eq. (1.23). The corresponding functions will have a subscript zero to 
distinguish them from the general case. The solution of problem (1.8), (1.9) with P 41 has the 
form [14] 

CL&) = +Q(P*ln2P); 4= ’ 
ln(4/P)-y (2.1) 

(where y is Euler’s constant). Restricting ourselves to the leading terms in (2.1), from (1.9) and 
(1.17) we obtain [ll] 

so(o) = (T (2.2) 

It is shown in Appendix A that in this case one can directly solve the junction problem in the 
physical plane and obtain the formula 

z&-)=&f- ldy -1 

which with t- = P enables one to find the shape of the contour I,. Analysis shows that when 
d = 1 the contour has a singular point z = 0 responsible for the appearance of singular terms in 
Eq. (1.23) when E + 0. Moreover, this formula turns out to be useful both for small P as a test, 
and in the case of arbitrary P for obtaining points of the contour in the neighbourhood of the 
bridge when E -+ 1 (see Appendix B). However, from the point of view of finding the function 
cpO(o) it is of little use, because the reconstruction of the latter by the inverse method still 
involves solving the integral equation. The exact solution that has been found for the junction 
problem nevertheless enables us to hope that a solution of Eq. (1.23) exists in terms of 
elementary functions. 

We will analyse the right-hand side of the equation. To do this we introduce the function 
h(o) = In(G,(o)/(l-d4)]. Rewriting it according to (1.17), (1.24) and (2.1), we obtain 

fo(~~)=-ln(l-2d*cos20+d~)+iarctg d_2s:cz20 
[ . 1 

Assertion 1. The function h(o) satisfies the relations 

T(Refo(o)ls) = -2Imfe(s). r(hnfa(@lS) = ;Re fa(s) (2.5) 
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where (&,)_I(o) is the inverse function to p,,(o) and the asterisk means that d* is replaced by 
-d2. 

Proof. Using the representations of sines and cosines in terms of the tangents of half angles and using 
(1.6), (1.24) and (2.2), we find that 

1-2d2cos2(Po)_,(o)+d4 = ,+2d;;o--20+d4 

arctg 

sin2@0)_t(o) 
d-2 -cos2(&,)_,((3) 

] 
From this we directly obtain (2.4) 
The validity of relations (2.5) follows from the form of the expansion of fo(o) as Fourier series [15] 

and relations for Hilbert integrals [16] 

r(coskols)=-sinks, r(sinkals)=cosk.s 

We will now construct the solution of the integral equation. We rewrite (1.23) in the 
equivalent form 

cp,(s)+$._ o-P&) i [ctg * 

-&. j [cti;” 

+i~o[~Po)_,~~~ldo- 

-+i cp,(o)&=f,(s)+ln(l-d4) 
x 

] 
(2.6) 

We will seek a solution of (2.6) in the form cpO(o) = h(o)+ C,, where C,, = const. Denoting by 
[L,,cp,](s) the integral operator on the left-hand side of (2.6) and using (2.4), (2.5) and the 
relation 

(2.7) 

we have 

Comparing the final expression with the right-hand side of (2.6), we find the value of C,,. We 
finally obtain 

(Po((T)=f0(6)+Hln(l-d4) cw 
We note some properties of the solution obtained. When E G 1 the real part of the function 

cp,,(o) has increments of order In& in the neighbourhoods of the points CJ = 0, CJ = fx. Here the 
imaginary part is smoother, being bounded by quantity of order 1. However, it follows from 
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(1.25) and (2.5) that large values of Id&l& I at the points t = 1, -1 when ~91 are ensured not 
only by the real, but also by the imaginary part of (~~(0). 

3. SOLUTION OF EQ. (1.23) IN THE GENERAL CASE 

It is natural to assume that in the general case the solution cp(o) of Eq. (1.23) has the same 
qualitative properties as gO(a). In other words, when Mel the real part of the function (p(cs) 
has a logarithmic singularity at the points o = 0, CF =+R, which also causes the slow conver- 
gence of the numerical solution. The imaginary part g(o) is smoother, but together with the 
real part it causes large values of Idz,ldt- I at the points t = +l.This means that when the 
contour of the ice-soil body is reconstructed by direct integration of the function (dzldt-), in 
the neighbourhoods of the given points large errors will be unavoidable, even in the case when 
the function cp(o) is found accurately. Taking all this into account, it makes sense to attempt to 
isolate the singularity from the integral equation using (2.8). 

We shall seek a solution of Eq. (1.23) in the form 

(3.1) 

where N is, for the time being, an arbitrary constant, If [Q](s) denotes the integral operator 
on the left-hand side of (1.23) acting on the function q(o), and we use 

(3.2) 

then substituting (3.1) into (1.23) we obtain 

[M, I(s) = Q(s) 
(3.3) 

@O) = ln g(s) + In G&+)1 - MLcp&) 

We transform G(s) into a more convenient form. Using the substitution o=cz_,(~), s= 
a,(z), relation (2.7) and also the fact that the function cpO(z) is a solution of the equation 
[L,+pJ (t) = lnG,(t), we find 

(3.4) 

We have thus obtained an integral equation (3.3) for C++(O) in which the right-hand side 
contains a provisionally arbitrary parameter N. It is natural to expect a smoother right-hand 
side to lead to a smoother solution ~&(a). Hence we choose N so that the function @(a) does 
not contain a singularity of order lne at the points <T = 0, fx. 

We shall analyse the expression obtained for a’(s) from the point of view of its smoothness 
as E + 0. It is clear from (3.2) that the function lng(s) has no singularities. The singularities of 
the function lnG,,(s) were discussed in Section 1: over a circuit of the contour they have an 
increment of order lne in the neighbourho~s of the points s=O, rta. The introduction of 
o(s) does not change its qualitative behaviour because a'(O), a'(h) are finite and do not 
depend on E. 

The following assertion holds for the difference of the two Hilbert integrals in expression 
(3.4). 

Assertion 2. The function Q(s) = I’&(o) f a(s))- IY((fo[a(o>] I s) has no singularities of order 
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lne for any S. The derivative of &2(s) has singularities of order l/c in the neighbourhoods of 
s=o, s=*x. 

The proof is performed by standard Cauchy integral methods [9] using the properties of the 
function a(o) given in Section 1. 

Thus only the function lnG,[a(s)] has a singularity of order lne in the expression for a(s) 
and, consequently, the smoothest Q(s) is achieved by choosing N = 1 

We finally arrive at the following problem for cpl(a): find a solution of Eq. (3.3) with the 
same integral operator as in (1.23), but with a right-hand side of the form (3.5). The solution of 
Eq. (1.23) is then constructed directly from (3.1), where the constant iV must be set equal to 
unity. 

Appendix B gives the most important properties of the numerical implementation of finding 
cp,(o) and the shapes of the ice-soil body. Note that the conclusions and formulae for the 
transverse array of the coolers obtained both above and in the Appendices also hold for the 
tandem array if one formally replaces id by d and d2 by (-d’). 

We shall make some remarks on the limit as E + 0. This case corresponds to an infinitely 
narrow bridge. We shall call it the critical regime. The corresponding values of the physical 
characteristics are also called critical. Because it is impossible to put E = 0 in the calculation, we 
put E = 10”. The thickness of the bridge was found to be = 0.01. 

4. DISCUSSION OF THE RESULTS 

A series of calculations was performed to determine the shape of the ice-soil body formed 
by a system of two coolers with a given intensity 4 (see Figs 2 and 3, where q= 0.996 (a) 
and q = 7.18 (b)) and a given Pe (see Figs 4 and 5 with Pe = 0.5 (a) and Pe = 2 (b)). Because 
the process is symmetrical about the x axis, only the upper halves of the bodies are shown. 

(a) 

Fig. 2. 

(b) 

-2 -I Of 23 4s 
Fig. 3. 
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Fig. 4. 

-2 -/ 0 f 2 3 x 

Fig. 5. 

Table 1 shows the values of physical parameters for the different curve numbers. It is clear that 
in nearly-critical regimes the body has a complex form which depends significantly on the 
orientation of the pair of coolers relative to the free flow. At the same time, in critical regimes 
the local behaviour of the contour of the ice-soil body in the neighbourhood of the bridge 
point is universal: here the contour has a cross-shaped right-angled intersection. In far-from- 
critical regimes the shape of the body depends only slightly on the orientation of the coolers 
and is close to that of a body formed by a single cooler of the same total power 2q [l]. 

Figure 6 shows the behaviour of the boundary of the ice-soil body in the neighbourhood of 
the bridge as the critical regime is approached for the transverse array of the coolers. (Here 
curve 1 corresponds to curve 1 in Fig. 2b.) It is clear that this boundary is always a smooth 
curve, but its curvature at the intersection with the y = 0 axis increases without limit as the 
critical regime is approached. Only in the limit of the critical regime is there a break point-it 
is the point at which separate ice-soil bodies link up, 

Figure 7 shows the dependence of the cross-sectional area of the ice-soil body S on the 
power of the coolers q for various P&let numbers. The dashed lines are the corresponding 
S,,(q) curves. Henceforth the unprimed numbers are for the transverse array of coolers, and 
the primed numbers are for the tandem array. It is clear that for small Pe the cross-sectional 

Table 1 

Fig. 2(a) 

0,100O 
O,O!Hl 
0.0950 
0.0797 
0.0596 

Pe 9 

2(b) 3(a) 3(b) 4(a) 4(b) 5(a) 5(b) 

10.32 0.0976 8.1% 1,77 3.25 1.84 3.57 
10.18 0.0928 7.846 1.80 3.36 1.90 3.64 
9.530 0.0784 6.726 197 3.75 2.03 3.94 
7,630 0,059O 5,146 224 4.38 2.29 4.49 
5.510 0.0395 3,485 2.75 5.39 2.77 5.47 
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0 X 
Fig. 6. 

Fig. I. 

area of the ice-soil body does not depend on the orientation of the coolers even in near-critical 
regimes. For large Pe with the same cooling power the transverse array gives a somewhat 
larger cross-sectional area of the ice-soil body. At the same time, the tandem array gives a 
larger critical cross-sectional area SW (Fig. 8, curves 2 and 2’) because the corresponding 
critical value rt,, is larger (curves 1 and 1’). The same graph shows that in the case of the 
transverse array of the coolers the value of S, is approximately constant and does not depend 
on Pe, although calculations have shown that the shape of the ice-soil body changes consider- 
ably up to the last calculated value of Pe = 100. In the case of tandem array the quantity SC,. 
undergoes significant growth in the range Pe E [0, 41, mostly at small Pe, and is then practically 
constant. Here the shape of the leading body already stabilizes at Pe = 0.85. The shape of the 
rear body continues to change as Pe increases in the neighbourhood of the rear point. 

It is interesting to compare the results obtained with those of [4] where a similar problem was 
considered with the assumption that Pe% 1 and that the heat transfer along the stream lines could be 
neglected. As has already been noted [ll], a similar approach applied to a single body gives a distorted 
picture in the neighbourhood of the rear point of the body. (Instead of a smooth contour one obtains a 
sharp cusp.) In the case of two coolers in the transverse array, formulae previously obtained [4] for the 

critical regime give a distorted picture in the neighbourhood of the point of contact-all the angles made 
by the contours of the body with the x axis are different from those obtained by calculation. 

However, the linking condition for separate bodies obtained in (41 is of fundamental interest. From the 
solution of the problem for a single ice-soil body formed by a pair of coolers in the transverse array, with 
the assumption given above, the condition 

~>3-&!zE 

was obtained. 

(4-l) 
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0 d a9 Pe 

Fig. 8. 

It is clear that the expression on the right of (4.1) is an estimate of the dependence q,,(Pe), and the 
graph shown in Fig. 8 demonstrates that this estimate is fairly accurate (the dashed line). 

At the same time, it is clear by construction that the approximate condition (4.1) and the more accurate 
condition 

9 > 9,,(W (4.2) 

are in fact “non-separation” conditions, because they were obtained under the assumption that there was 
a single ice-soil body. We then have the problem of whether the “non-separation” condition holds as a 

linking condition. 

This problem can be analysed completely when the problem of two separate bodies is solved. But one 
can perform a partial analysis, at least for large Pe. In this case it is natural to assume that an insulating 
wall between the ice-soil bodies (the plane of symmetry of the flow) has no effect on the shapes of the 
bodies when their sizes are small compared to the distance from the cooler to the wall. One can 
consequently take each of the bodies to be single and obtain their shape by well-known methods [I]. 

Figure 9 shows the shape of a single ice-soil body for Pe = 5 when q = q,, = 5.01 (the solid curve) and 
separate bodies when q = 5.21> q,, (the dashed curve). Notwithstanding the fact that condition (4.2), and 
all the more so (4.1), are satisfied, it is clear that the separate bodies are far from linking. One could 
imagine that the assumption adopted holds. However, calculations show that if one takes yet another 

insulating wall, symmetrical to the first with respect to the position of the cooler (flow past a linear array 

of coolers, to be published), the shape of the ice-soil body is almost the same as that of the single body 

shown in Fig. 9. 
Thus we arrive at the conclusion that, at least for large Pe, one cannot use the condition proposed 

previously [4] as a linking criterion for ice-soil bodies, nor any other criterion based on solving the 

problem for a united body. 

APPENDIX A 

The solution of the junction problem for small P has already been published in compressed form in 
conference proceedings [17]. Here we give a detailed account. 

We restrict ourselves to the leading term in (2.1). We have 

2 -% 

ae- -= 4 , cp* 
ah [( 11 2a.X 2a. 641) 
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0 4s x 

Fig. 9. 

Here the root is positive at the upper edge of the cut in W,, and negative at the lower edge. 
The junction condition can be written in the form (1.11). After changing from 5 to z and using (Al) 

this gives 

It can be shown that after multiplying by dz the left-hand side of this relation can be written in the form 

if one takes the function x(W.) to be 

Thus the condition on I, acquires the even simpler form 

q d ( 1 -- - It dzlnx=c, ter, 

(A3) 

(A4) 

WI 

We will investigate the singularities of the functions on the right- and left-hand sides of (A5). In the 

domain 0: the function dW+ / dz obviously has the singularities 

dw+ 
dz z-xti 

=-+&2(l) W) 

Comparing the domain D; with the image domain of the function x(z), or using (A4) with the domain 
D; we see that x(z) is regular and non-zero throughout 0;. Moreover, taking (1..5), (1.6) and (1.10) into 

account, we obtain from (A4) that 
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5% 
dz I Izl-wo 

=;; x(z)&.a=‘z+o(l) a (A71 

The function dlnxldz consequently has no singularities in D;, and at the point IzI+ m has a first- 

order zero 

W) 

Thus the functions on the right- and left-hand sides of (A5) have no singularities other than poles. One 

can therefore introduce a single meromorphic function w(z) 

[ 

-(qIn)dlnXldz, ZE D;, 
o(z) = 

dW+ I dz, ZE D;, (A9) 

that has two simple poles in the z plane and regular behaviour at infinity. We know [7] that such a 
function can be reconstructed from its singularities: o(z) = A(z + B)l(z’ + 1). 

The complex constants A and B are determined from (A6) and (AS): A =-q/n; B=O. Finally, we 
obtain 

o(z)=-(qh)z/(z2+1) (-‘W 

Now, taking (A9) into account, we find that 

w+(z)=-l;; ’ ln[(z*+l)C+l, x(z)=C-LG (All) 

The constants of integration C’ and C- are determined from (A7), (A9) and (AlO) taking (1.13) into 

account 

C-=ila. C+=d*=l/a* (A12) 

Substituting them into (All) and using (AS) and (1.13), one can determine the shape of the contour r, - 2 
z= t n- -7 

-1, t-=ei”; z=&$$-y. t+ =,@ (-413) 

Using the shift formula (1.17) and taking (2.2) into account, one can verify that body expressions in 

(1.13) give one and the same family of contours. 
The relation between the auxiliary parameter d and the physical parameter Pe for given P (which is 

equivalent to a given (I) is established from (1.27) taking (1.6) and (A12) into account 

Pe=Pd (A14) 

The case d = 1 corresponds to the critical regime, and from the second relation in (2.1) and (A14) one 
can determine q,,( Pe) 

A 

qcr = ln(4/Pe)-y (AIS) 

One should however bear in mind that the representation of q(P) in (2.1) only works well when 
P s 0.1. Consequently the asymptotic formula in (AH) only holds when Pe G 0.01. 
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APPENDIX B 

Because high accuracy is required when calculating nearly critical regimes, the numerical imple- 
mentation of the algorithm described above requires special attention. We shall describe the more 
important points. 

The integral equation (3.3) for the complex function cpl(o) is transformed into a system of two integral 
equations for the real functions Recp,(o), Imcp,(o). The resulting system is solved by the collocation 
method on a non-uniform grid. The matrix obtained in well-conditioned because the form of the system 
ensures predominance of the diagonal elements. The standard Gaussian elimination method with partial 

choice of leading element is used to invert it. 
The need for a non-uniform grid is due to the fact that the derivative of a?(a), which is the right-hand 

side of the integral equation for cp,(o), has singularities of the type l/& at the points o=O, ci=rtrr (see 
Assertion 2). These singularities are enough to introduce a significant (-1%) error into the shape of the 

ice-soil body at d = 0.995 (when the thickness of the bridge is still -0.2) if, for example, the grid has 128 
nodes in the interval [0, n]. Applying a non-uniform grid concentrated around o= 0, cr= rta for the 
transverse array and around cr = f7c/2 for the tandem array of the coolers one can get to d = 0.99999 with 
100 nodes and a corresponding error of < 0.5% (the bridge thickness = 0.01). The numerical error is 
estimated from the closeness of the resulting contour to closure. 

A special approach is used to compute the integraIs on the right-hand side of (3.5). The latter, using 
integration by parts, is reduced to the form 

where 

B-S * cJ+s 
R(C&s)=lnsin-sm- 

IL 

sin cL(cF)- a(s> sin a(o) + a(s) 
2 2 2 2 11 

J(o,s)= lnsinysin a(c) + a(s) 

I[ 

~i~a(~)-a(~) . o+s 
sm- 

2 2 2 I/ 

Using (2.3) we see that due to the presence of the derivative of f, all the functions in the integrand 

behave badly in the neighbourhoods of CT = 0, 0 = irr and standard methods of numerical integration 
produce large errors. The following technique is therefore used. Using the fast Fourier transform 118) the 

functions R(cr, s),f(o,s) and [o_,(a)-a] are expanded at each point s in terms of cos[ko(o)], sin[kcr(o)] 
and sin(ko), respectively. (The latter expansion does not depend on s and was naturally only found 
once.) It is clear that the behaviour of the expanded functions is determined only by the function o(o), 

which is always smooth. Hence the expansion coefficients decrease rapidly and are themselves 
represented by series that are fairly exact. (In the calculations rz was taken to be 128.) After this all the 
integrals were evaluated exactly [19]. 

As has already been remarked, when E < 1 one must consider the problem of obtaining points on the 
contour of the ice-soil body near the bridge. It was assumed that the violation of the conformality of <(t-) 
at the points t- =+l was only due to the contribution of the function cp,[cr(s)] to (3.1). Then, from (1.25) 

and taking into account (A13), (2.3) (2.8) and (3.5), the formula 

is obtained, which was also used for integration in the neighbourhoods of s = 0 and s = frr. The rapid 
convergence of the integration when the step size is reduced enables us to assert that the assumption was 
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correct, and hence that locally the neighbourhood of the bridge the contour of the ice-soil body in general 
has the same singularity as for small P. 

To compute the normalization factor h one must take into account that <(r+) gives a conformal 
mapping of D; onto D;, and after reconstructing the contour of the ice-soil body its boundary values are 

known: t;(t+ 1 I,+d=r,O = <(r-j J,-=LL1(al . Then, as is well known, the value of the function at any internal point can 
be obtained with the help of the Cauchy integral [7]. In particular, for t’ = &id we obtain 

after which it is easy to find h. 
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